$H^{1}$-bounds for spectral multipliers on graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ü Bounds for Spectral Multipliers on Nilpotent Groups

A criterion is given for the Lp boundedness of a class of spectral multiplier operators associated to left-invariant, homogeneous subelliptic second-order differential operators on nilpotent Lie groups, generalizing a theorem of Hörmander for radial Fourier multipliers on Euclidean space. The order of differentiability required is half the homogeneous dimension of the group, improving previous ...

متن کامل

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

Metric uniformization and spectral bounds for graphs

We present a method for proving upper bounds on the eigenvalues of the graph Laplacian. A main step involves choosing an appropriate “Riemannian” metric to uniformize the geometry of the graph. In many interesting cases, the existence of such a metric is shown by examining the combinatorics of special types of flows. This involves proving new inequalities on the crossing number of graphs. In pa...

متن کامل

New upper bounds on the spectral radius of unicyclic graphs

Let G = (V (G), E(G)) be a unicyclic simple undirected graph with largest vertex degree . Let Cr be the unique cycle of G. The graph G− E(Cr ) is a forest of r rooted trees T1,T2, . . .,Tr with root vertices v1, v2, . . ., vr , respectively. Let k(G) = max 1 i r {max{dist(vi , u) : u ∈ V (Ti )}} + 1, where dist(v, u) is the distance from v to u. Let μ1(G) and λ1(G) be the spectral radius of the...

متن کامل

Bounds On The Second Stage Spectral Radius Of Graphs

Let G be a graph of order n. The second stage adjacency matrix of G is the symmetric n× n matrix for which the ij entry is 1 if the vertices vi and vj are of distance two; otherwise 0. The sum of the absolute values of this second stage adjacency matrix is called the second stage energy of G. In this paper we investigate a few properties and determine some upper bounds for the largest eigenvalu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2003

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-03-07356-8